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The Opera tor C ompac t Implicit Method for Parabolic Equations

The results presented in this report were obtained as part of a concerted
effort to develop reliable and efficient numerical techniques for solving
major fluid dynamics problems. Here the methods are designed to form the
basis for a practicable computer code to solve viscous fluid flow problems.
Eff icien t fourth order finite difference approximations are developed . Their
associated stability and accuracy characteristics are analyzed and studied .

These techniques presen tly form the basis for a three—dimensional boundary
layer computer code being developed at NSWC/WOL.

This study has been supported jointly by the Naval Surface Weapons Center
Independent Research Fund , NAVAIR and NAVSEA .
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I . I ~ TF’I ~Ifl~ ( T I  1’;

The current engine ering requirements for providing computational fluid
dynamics codes for realisti c viscous f l o w  problems have provided the impetus
icr the development and implen&’ntation of higher order finite difference
techniques t 61 , 1 1], [221. It has been repeatedly demonstrated on model
p r o b l e m s , t h a t  even the  s I mp l e s t  t ypes  of h i g h e r  order  me thods  should provide

• tremendous p r a c t i c a l  advan tages  in te rms of d i m i n i s h i n g  the  requi red  number of
• p o i n t s  ( s t o r a g e )  and also the overall computing time for a desired resolution .

The present effort was undertaken to confron t the f u l l  range of associated
• computational problems that would be involved in practical viscous flow field

calculations. Our goal was to try to develop a cohesive set of h igher  order
approximation tools which  would help to i n d i c a t e  what  me thods  u l t i m a t e l y  might
he best employed to fo rm the bas is  of a m aj o r  new code.

I t  apne red to several people almost simultaneously (sparked by a suggestion
of H. 0. Kreiss [14]) that from among the various techniques available a fruitful
class of methods might emerge from the so—called compact implicit techniques
1 3 1, { 6 1. Al though there appear to be a variety of forms and implementations
the approaches do share some broad characteristics. The higher order is usually
sought for the spatial part of the differential operator. The method d eveloped
is generally req li red to;

1. reduce to tridiagonal form for fourth order accuracy
2. allow for nonuniform spatial grids (usually at the expense of one

order  of accu racy )
3. allow for flexibility in choosing the time step .

In the various methods d eveloped so far all these conditions have been met for
simple model problems. However , further important concerns still remain.

As pointed out by [ 3 ] , [ 4 J and [ 2 1 the usual compact implicit techniques,
because of their implicit complexity, are not generally applicable in a direct
manner to problems with varying order derivative terms unless a vector unknown
of the derivative values is considered . Indeed , adopting the factorization
technique suggested in 1 3 1 for a wave equation problem to a model parabolic
problem resulted in numerical instabilities (see Section 111.3 below). To
circumvent such problems , we advocate the use of a more general spatial approxi-
mation method , an operator compact implicit method suggested by B. Swartz [24].
Esse nti ally, the same basic ideas are involved and instead of setting up
spa tial approxima t ions for individual deriva tive terms one now poses the
d ifference approximation in terms of the spatial operator. This spatial approxima—

• tion has been previously derived by [171; however , the basic derivation and
implementation there proceeds along lines different from those taken here.

• An other serious concern that one has relates to the stability character-
istics of the overall method . If the spatial operator is associated with
implicit temporal schemes , as it might be expec ted , a variety of unconditionally
stable schemes result for the linear model. However , the cell Reynolds number

• stability characteristics are now somewhat more difficult to elucidate

Al though our analysis in section V is incomplete , all experiments to date
ind icate that for the operator compact implicit (OCT) approximation , there is a
wider range of admissible cell Reynolds number than for the usual compact implicit
methods.

.3
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In our numerical studies of nonlinear models we have chosen to use two
different approaches. As a benchmark , we have taken the  basic Crank—Nicolson
routine solved by simple successive approximations. Our second approach adapts
a Lees type method [127 which does not require temporal iterations for a non-
linear problem . This latter simple scheme has proven to he very effective in
numerical experiments.

What  emerges from our investigation is that a promising class of methods
can he developed around the operator compact implicit method. On the basis of
our experiments an OCT—l ees type scheme appears to be very efficient and
reliable. In the f I l t u r E  we hope to resolve ques t ions  concerning the treatment
of mixed spatial derivative terms and to more fully resolve the limitations
assoc ia ted  w i t h  c e l l  Reyno lds  number e f f e c t s .

I T .  BASIC D I F F F R ~ N ( F ! C ~~ AT ION S

The classical finite difference approach for solving two—point boundary
vai le problems of th~ orm

( 2 . 1 )  L ( u )  = a(x) u + h(x) u = f , xc [0,l]xx x

~. ith u(O), u(l) given Is to separately substitute standard approximations for the
first and second derivatives in (2.1) and then solve the resulting system of
equations. Accordingl y , the centered second order approximation for these terms
is

( 2 . 2 )  
2h 

(u
~~

)
j  

+ 0(h2)

~~~ U - 2 U .  + U

( 2 . 3 )  —
~~~~~~ 

- j~~~~~~~~_I ~~~ = (u ). + 0(h 2 )
2h h

2 xx ]

wher e x
1 

= j h , i=O ,l , -” ,J and U~ “ u(x
1
) and h = l/J is the mesh size.

The resulting sys tem of equat ions that is derived upon subs titut ion of
(2.2), (2.3) into (2.1) is tridiagonal , and hence easily solved . For the case
of Dirichlet data , there is no need to create fictitious points (i.e. to
extrapolate Information) in order to implement the scheme. However , if higher
order accuracy is desired , the classical approach is to enlarge the basic mesh
star , i.e. use more points in the discretization . Again, for the centered type
of approximation fourth order accuracy is achieved by the following

(2.4) — 

~ ~
] ~~~~~~~~~~ 

— 8U1.1 + S UJ÷1 
— 
j:f2 

= ( u)
1 
+ 0(h

4)

(2.5) Ii - L ~21 ~~~~ 
- U~~ 2 + l6U

1~~ 
- 30U~ + l6U~~ 1 - j+2 

= (u ) + 0(h4)12 XJ h2 12h2 ,CX j

4
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hv s l 1 b s t i t u t i n p ,  ( 2 . 4 ) ,  ( 2 . 5 )  in t o  (2 .1 )  a pentadiagonal system of linear
eq u a t i o ns  is  o b t a i n e d , and i t  is necessary  to  use fictitious points near both
boundar i e s .

A d ifferent fourth order approximation can be obtained by following a
sugcestion of Preiss [14]. The resulting representation is of an implicit
nature in t h a t  there are relationshi ps among the function and Its derivative at
each of three ad~ acen t mesh points. Because the method achieves the highest
or~ cr accuracy possible on the smallest star it has been called the compact
i m p l i c i t  method . For the de r iva t ives  considered above , fol lowing our no ta t ion ,
one obtains

2 —l

( 2 . 6a) [T + f-] ~~~~ U
1 

= (u
x)j 

+ 0(h4)

( 2 .6h ) 
~

, 
= 

11
j +l 

- U~ _ 1 
= Ei + ~~~ ](u ). + 0(h

4
)

(u ) .  + 4 ( u  ) .  + (u )
= 

x j +l x j  x j — l  
+ 0(h4)

and

2-~—j . ~ 2

( 2 .7 a )  Ii + —~-— I —
~~

— U . = (u ) .  + 0(h 4 )
L ‘2 J h~

or

. 2 
~~ - 2 U . + U .

( 2 . 7 h )  ~~~ = = I + —~~— (u ) + 0(h4)
h 2 •~ h

2 12 x x i

(u ) .  + lO(u ) . + (u )
= 

xx j+l xx j  xx j—l 
+ 0(h

4
)

Equa t ions  ( 2 . 6 )  and ( 2 . 7 )  are derivable by either a Taylor series analysis,
Hertn ite polynomial  i n t e rpo la t i on  or by th inking  of ( 2 . 4 )  and ( 2 . 5 )  as Neumann
series represen tations (up to fourth order ) of (2.6) and (2.7), respectively .
As a refer ence for these f ormu las in the case of an uneven grid, see [ 1 1.

By substituting (2.6) and (2.7) into (2.1) it becomes apparent that in
general it is not possible to directly obtain a tractable system of equations in
terms of U

1 alone. Indeed , to solve the resulting system one can define new

variables F
1 ~ 

( u )  and S
1 ~ 

( u )
1 
and develop the following 3x3 block t n —

d iagonal system of equations approximating (2.1):

5
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U~ — I’ F . + 4 F . + F
(a) j+l _j_ l 

- 
+l j~~~~j~~i = (I

2h 6

( 2 . 8 )  (b)  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
+l~~~~~~~~ 

± 8j -l  
=

(c) b . F . + a .~ = f .
1 1 3 1 1

where b
1 

= i (X .) and a . = a(x.) and the above equations hold fo r  j= l , 2~~” ,J — l .

A l t e r n a t i v e ly , om i t t i n e  S . and us ing  onl y U 1, F . a 2x2 block t r id i agonal  system

r e s u l t s  f r o m  u s i ng  ( 2 . R) (a)  w i t h

( 2 . 9 )  ~~~~l 
2 !’ .~~~~F . 1 1 ~~ b .~~1 

+~~~~~~ F +-~~~~ F .
h 2 l2

\a .+1 .1+1 a~ 
-
~ a . 1  j

~~
lJ

If . lOf .
= 

1 ~ j+l _j
~~ 

j-l
12 ~~a . a . a .‘— 1

•uat ions (2.8) and (2.91 require more work to solve them than the second
order method , hut  genera lly  the higher order accuracy permits one to solve wi th
considerably fewer po ints to achieve a comparable accuracy. Moreover , for
Dirichlet data , no fictiti ou s points are needed . Boundary values (j=O ,J) are
r equ i r ed  fo r  F 1 in ( 2 . 9 )  and for  F 1 and S1 In ( 2 . 8 ) .  How these va lues  are ob ta ined
in the t i m e  dependent case is discussed in sect ion I I I .

At this point we preview some of the results that will be presented in
sect ions  I T T  and IV where a parabol ic  problem with a spatial operator given by
(2.1) is considered . There it will be seen that all the usual ways of solving
imp licit systems incorporating compact imp licit schemes do not provide a
general ly successful method in the following sense. There does no t appear to be
a way of achieving a scalar tridiagonal factorization for an unconditionally
stable scheme when the compact implicit schemes are used for (2.1). However,hy
using a different approach for the spatial operator these goals are still
at tainable. Namely,we abandon our attempts to represen t the separa te deriva tive
terms in the spatial operator and adopt an approach which looks for a relation-
ship on three adjacent points between L(u) and the function u. The resulting
f o u r t h  order  a c c u r a t e  re la t ionship may be derived by a Taylor series development
and can he represented in the following equations

(2.lOa) c4(L(U))j+1 + q~~(L (U))
1 

+ q (L(U)) 1_ 1

+ 0 -
r
1
U
1~~1 

+ r
1
U
1 

+ r
1
U
1 1

6
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— l
(2 .1Db) ~~~~~~~~~~ u(x .) = L(u). + 0(h 4 )

h~ 
•~

where the  ope ra to r s  1) and R are each tr idiagonal displacemen t opera tors , namely

-, + . 0 -
(.. . h a )  0 U

1 
= q .  t •+l + q. U . + q

1 
I
~~

_
~

( 2 . l l h )  B 1’ . = r
+ IT . + r? u . + r~ u .

~ j  j +l j 3

and where

= 6a.  a .  + h(5a  b .  - 2a . h . ) - h 2 b . b
.1 ] j — l i 1  1 j  j—l j

q~ 4 [l5a
1~~1 a

1 1  
- 4h(a

1~~1 b 1_ 1 
- b

1~~1 
a
1 1
) - h 2 b

1÷1 
b~ _ 1 I

q .  = 6a.  a
1~~1 

- h(5a
1~~1 b . - 2a . b

1÷1
) - h 2 b . b i+l

( 2 . 1 2 )  
+

= ~~[ q . ( 2 a .~~1 + 3h b 1~~1
) + q~~(2 a. + h b .)  + q (2a . 1  - hb . 1)I

r. = ~~[q~~(2a .~~1 
+ hh .~~1

) + q?(2a. - hb .) + q .(2a . 1  - 3hb
1 1

)]

O + -

r . = — (r . + r .)
3 _ 1 I

These r e l a t i o n s h ips were f i r s t  presented by Swartz  [2 4 ] .  Equation (2.lOa)
r e t a in s  the  scalar t r i d iagona l f e a t u r e  of a second order method while not
requiring additiona l fictitious points at the boundary . Note , in the case
where either a(x) or h (x) is identically zero , with the other coeff ic ient
id entically a constant, the usual compact Implicit schemes (either (2.6) or (2.7))
will result. Because of these characteristics we have adopted the terminology
of referring to (2.10) as the operator compact implicit (OCI) method . Note a
formula of structure similar to (2.10) — (2.12) is presented in Appendix A
for the case of an uneven grid . In that case the method is third order accurate.

A t least symbolically , we refer to the inverse of Q. The de termination of
when Q can he inverted is in general a difficult problem . In the case of constant
coefficient s (a(x) a = const , b(x) E b = const) the invertibility of Q on
can be f ull y analyzed by Fourier analysis [23] . Defining R

c 
= as the cell

Reynolds number then 
~ 

1 exis ts for

(2.13) B ~ 
= 3.464

c

(The inver t-Ihility of Q on a finite dimensional space is harder to specify.
For the above case, a simple sufficient condition guaranteeing diagonal
dominance leads to Rc ~~ (~ 3 + ,/2Z1T)/4 = 3.195.)

7
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Ihe above spatial approximat ion can he extracted from those schemes developed
by [17 1. [101 in the cont ext of approximating a time dependent parabolic operator.

i h e i r  resultant system of e q u a t i o n s  Is  identical to an OCT approximation applied
to a par ;tholic operator or some particular choice of a temporal scheme. However ,
t he  p r e s e n t  approach  a l l o w s  one to develop a variety of combinations. Moreover ,
it should he observe ] that similar spatial approximations have been developed

~1n~~er vi~r i o i , s  n ames , In p ar t i c u l a r  C o l l a t z  had somet ime ago advocated such approaches
w h i c h  ?~~~ re f e i  t o  ~~ ‘H e hr st e l l en ’ me thods  [ 5 1.

In - r d e r  to a p p l y  any of the L.eLhods presented here to parabolic equations ,
i t  i~ n~-ce ss~~rv  t o  a s s o c i a t e  a t ime I n t e g r a t i o n  method . These cons ide r a t i ons  are

i~~~ in  t h e  f o l l o w i n g  s e c t i o n s .

I T T .  A L 1 T R N A I V I  TI~IF IN TE GRATIONS WITH COMPACT IMPLICIT SPATIAL DIFFEREN CES

In this section we consider time integration methods to be used in conjunction
with compact implicit spatial differencing [(2.6)—(2.9)] in the model parabolic
pr oh len

(3.la) u~ = a(x,L) Li + b(x,t) u

(3. lb~ u(0,t )  = c ( t ) ;  u ( l , t )  = d ( t ) ;  u (x ,O) f ( x )

For a d iscuss ion of compact  i m p l i c i t  methods applied to the comparable
second order hyperbolic problem see [ 3], [ 4 ] .

In all that follows the notation introduced in section II is used . In
particular ,

— 1 2

(3.2) ~~ i~i] ~~-~~
__ 

~~

~ 2 —1

(3 . 3) F’? [I ÷ —f--] ~~~~~~~~

where U’~ ~ u(jh , nit) and .t is the time step .

IThere the methods presented here have appeared in a similar form in other works

details are omitted and appropriate references are given.

Exp l l r i t  Methods

The first class of time discretization methods to be considered are explicit
methods. Djscretfzing (3 . 1) in the usual fashion yields

—
(3.4) = a~ S~ + b’? F

m .
1 .1 3 1

8
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The - r iclit hand s i d e  is e v - i l u 3 t e T l  by T O ] n $ ~ t I n  v a l u e  of I ’
~ and (3.2), ( 3 . 3 ) .

Boundary condi t ions for s’? and T ’~ m u s t  he  ~:p~~c if  f e d . This t e c h ni q ue  was

invest i i ’ i t  -l by  I I i r s l i  F ~ 1 , P ’i l  i n  [ 2 2 1 ,  [ 2 3 ] ,  a n d Adam [11.

T h i s  m e t h o d  i s  t i r u t  o r d e r  ac~~T I r ] t e  in t i m  and s i n c e  it is e x p l i c i t  in t i m e
a r e s t r i c t i v e  s t a b i l i t y  ~o n T 1 i t I o n  mus t  he imposed (see e.g. H i r s h  [ 2 3 1) .  However ,

~~~u i  ions ~ori -~ed by using ~3. 2) md (3 . 3 )  a l r e a dy  are of an i m p l i c i t  n a t u r e .
Ihu s , e s s e n t i a l ly  no e x t r a  c o m p u t a t i o n a l  work r e s u l t s  if a second order  i m p l i c i t
t e m p o r a l  m e t h o d  is used in order  to  i n s u r e  u n c o n d i t i o n a l  s t a h i l i t .

I j T L i  it Net

Two second order  u n c o n d i t i o n a l ly  s t a b l e  me thods  are cons idered . The f i r s t
n t  t he s e  is t h e  u sua l  C r a n k — N i c o l s o n  method

- H~ •~?~~~ s~[~ + a’? 5’? h’?~~ F’?~~’ + b’? F’?
(1 

5)  

-- 
.
~ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + —a---- ~2 2

H e  second scheme ~ t h~ considered is adapted  from a v~cond order  method presented
by Lees [ 1 2 1  \ h i c h  used s t a nd ard approximations for s~ atial derivatives. The
Lees a pp r :ic ’ti . ~-,hen L p l e t i e n t e d  w i t h  compact  i m p l i c i t  spa r~ al difference approxima—
t i — u s , results in

- 3 1~~ l 
a’?(S’[~~ + s’? + 5n l ) b ’?(F ’?~~ + F’~ +

(3 ~ ) - -a-- - ~~~~~~~~~~~~~~~ = ~j-_ 
1 J + - ---h 3 3 3___ __

2 : t  3 3

The ( r ~in ~ —~~ico1son me thod  woul d  seem to he more advan tageous  s ince it is
o n ly  t w o — l e v e l  scheme. However , observe tha t  the  c o e f f i c i e n t s  in (3 .6 )  are
eval vi ted at the  ~ th t m e  level , t hus  - i t e r a t i o n  would be unnecessary even if a or
h were n o n l i n e a r .  Nonl inear equa t i ons  are  d iscussed in grea ter  de t a i l  in section V T .

Due to t h e  imp l icit nature of ( 3 . 2 )  and (3 .3)  one must consider var ious
t e c h n i q u e s  for  so lv ing  (3 .5 )  and ( 3 . 6 ) .  Here we l imi t  our discussion to three
basic app roaches ;  p r e d i c t o r — c o r r e c t o r , block inversion and direct factorization .
The implementation of the three methods is similar for each of (3 .5)  and ( 3 . 6 ) ,
t h e r e f o r e  ( L t a i l s  ar e  presented  onl y fo r  ( 3 . 5 ) .

1) Predictor—Corrector Method. The following predictor—corrector approximation
can he used to so lve  ( 3 . 5 ) .

- ii+l ,fl n+l . .n+1 fl n
H — L ~ a S . + a . S .

(3.7a) t__- = ±_ ~ •l ~ + b’? F’?A t  2 3 1

— u’? a’?~~ s’?~ + ~‘? s’? b ’?~
1 PY~~ + b’? F~

( 3 . 7h )  _-L-_~__ • _L = _~~~ 1 3 1 
+ ~ ~

it 2 2
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Subst  I t  T l t  1mg 1 3 .-T I  iii t o  ( I . 7 )  r~- stil - -; In the equat ions

(3 . ~a1 
[I 

- / 2  a~~
1 + 

t
x ]  ~~2] ~~ +l 

[I + 
~ a? [

I + 

~
] ~~2ju

n

+ it b’? F’?
3 3

2 — 1  2 — 1

(3 . T
~b ’  - A / 2  a

1 + ~x ] ~~
2
~ju

n+1 
= + ~ ~~ [I + 

T
x ] 2]ii

fl

+ ~~ (b~~~ 
•p~)+l + b~ F’?),

where = •~t/h
2 

and in  (3.8b ) is formed by subs t i t u t i ng  Y~
’
~~ into (3.3).

l h e  method may he shown to be uncondi t ional ly  stable and only requires  the
solu t ion of tridjagon~i1 matrices , however , there is one serious drawback. In
order to obtain a second order in time accurate method it is necessary to iterate
(3.8b) several times. :h~e to this limitation the method is not competitive in
term s of computing time . Predic tor—corrector methods of this type are examined
by Ruhin [23].

21 Block Methods. The block tridiagonal methods fall into two categories;
1,3 block and 2x2 block inversion. Equations (3.5) combined with (3.2) and (3.3)
form the system . By grouping the variables In vector format where the unknown
vector is

I-
,

(3.9) (;
~)one o’~ta ins the 3x3 block tridiagonal equation

(3 10 j ) [r + ~f]~~ 
U~~~’ — ~~~~ = 0

r 2 — l 2

(3.1Db) [T+ it_] ~~~~ U?~
l

S
~~

l = O

n+l it  n+l n+l 1~t n+1 n+l n At n n
÷ At n n

(3.lOc ) U
1 

— --
~~ b1 

F
1 

— —b- aj 
S
1 

= U
1 
+ —i b1 F1 

—
~~ a~ S1

Method s of this type were investigated by Hirsh [ 6]. This method is also
equivalent to one of the variants of the Spline 4 methods of Rubin [22].
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A l t e r n a t  i v el v , s u b s t i t u t i n g  ( 3 . 2 )  I n t o  (3.5), and completing the resulting
system with (1. 1), and grouping the variabl es into the unknown vector

U

(3.11 ) F .

r e s u l t s  in the 2x2 block tridiagonal system i n v e s t i g a t e d  b y Adam [ 1]

r 2-~— 1

(3 .12a) I T + ~~ ~~ — F’?~
’ = 0L 6 ]  .ii j 3

~ 2 — l

(~~. l2 h )  I - -
~
- a’?~

1 
II + _2

~.—1 ~ 2 u’?~ - 
~

-
~
-
~

- b’?~~ F’Y~~ =2 j  

~ 
l2j x ~ 

2 j

2 — l

T + - ~- a’? ~ 
2
~ Un ÷ At b n Fn

2 j  l2 j x j  2 j

In us ing e i ther  of the block methods it is necessary to satisfy extra
boundary conditions , tha t is, a cond ition for F in the 2x2 block system and
conditions for F and S in the 3x3 block system. Let us illustrate how this is
accomp lished at  the  end point X=0. For the 3x3 block method three equations
must  he obtained in order to eliminate F = u and S = u . Combining0 x x=O 0 xx x 0
equa t ion  ( 3 . l O a )  and (3.1Gb) for j 2  wi th  (3.10c) for j=1 and the independen t
Pad~ formulas (see Hirsh [ 6 1)

(3.lla) U~~
1 - ~~~~ + ~ (F~~

1 + F~~
1) + h (5

fl+l 
- Sr1) + 0(h 5) = 0

(3 . 1 3h )  U~~~
1 

- ~~~~ + ~ (F~~~ + 2Fr 1) - 
~~~~~ 

+ 0(h
4) = 0,

F
0 

and ~~ are eliminated .

Similarly , for the 2x2 block method two equations must be obtained in order
• to eliminate F0. Combining (3.12a) and (3.12b) for j=1 and j 2  with the Hamming
• formula (see e.g. Ralston [ 18])

(3 .14 ) 8ur’ - 9U~~~ + = ~ (F~~~ + 2Fr’ 
- F~~

1),

. F
0 

may be eliminated .

The boundary condition for the (3x3) block method was presented by Hirsh [6].
The above boundary condition can be used to retain fourth order accuracy in

• • contrast to Adam ’s [1] second order boundary scheme.

In order t o solve a block tridiagonal matrix the Thomas algorithm [ 8] is
used . This algorithm is analogous to that of a tridiagonal matrix, with multipli-
cation replaced by matrix multip lication and division replaced by multiplication
of an inverse matrix .
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-I



q
~ .’c /wor / TR 7 7 — 2 9

3) ~~ l~L o r i z a t i o n ~~~etho d . By d ire ctl y subst Itut ing (3.2) andl (3.3) into (3.5)
one obtains

(3.15) 
t +1

~~ 
= 

~ 
[n+i [~ + ~~~~~~ 

~x
2 r?~

1 + a
~~EI + 

~~ ~~~~ 
~~~

L Fh?+ 1 Fr + 
i~~ 2]~~ 2 p’?+l + b ’? Fr + ~ 2]~~

4 h [ i  L (
~~ x j  X 1 I L  6 X J  x j

Upon examin ing (3 . 15 )  I t  is c l ear  t h a t  t he re  is no way to “unravel” the implicit
o p e r a t o r s .  This l a c t  has b e t - n  observed by several authors (Ciment—Leventhal [3 1)
and indeed has caused some to  abandon  entirely the compact implicit methods [2].

Fo l lowing  t h e  idea in [ ~ 1~ of comp l e t i n g  the  product , by add ing the second
order  p e r t u r b a t i o n  c e r r , wh e r e  is the forward  d i f f e r e n c e  opera tor ,

2 + —l ~ 2 —1
( 3 .16) ~~~~~~~ 

1~~~~~2~
j 

~~ _ [ T ÷ ~~~~~~
2
~ ~~ u 1

to (3.15) the  f o l l o w i n g  f a c t o r ed  equa t ion  r e s u l t s

(3 . 1 7 )  — -
~~ a’?~~ + d 2] d

2] Er 
- ~~

- b’?~~
j
~l + 

1 p 2 11 
~~~~~~~~

= Er - + -
~~ a ’?ET + L x

x
2j

l 
~~2j ET 

+ 
* 

+ k ~~2r ~ j u
n

where = A t / h ~ anu p = ~t /h .

Denote  the ri e h t hand s i d e  of (3 .17)  by C ’? , then  the so lu t ion  of (3.17) can be

obta ined  b y i n t r c ’d i i t - in g  an i n t e r m e d i a t e  var iable  Z~’~~ and splitting (3.17) into

( 3 . l R a )  
[I 

- 
~~
- a’?~~ [i + 

1 ~ 2 J 1  ~ 2j z
n+l 

=

(3.18b ) - ~ h~~~
1 

+ 

1 2 :  

~]ur1 =

This technique is an a l o g o u s  to D’Yakonov ’s method [13] for two d imensional
problems .

The a l g o r i t h m  (3.18) s t i l l  r e q u i r e s  the solution of more than one tr idiagonal
system , but  no e x t r a  i t e r a t i o n s  are necessary as In the  p red ic to r—cor rec to r  method .
However , a more f u n d a m e n t a l  d i f f i c u l t y  p e r s i s t s  In this formulation . An inter-

media te boundary condition for is needed . This intermed iate condition implies

that either u or u on the boundary must he given . However specifying these in
x xx

general (for example by extrapolation) could create an 111—posed problem and

12
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generate instabilities (numerical experiments conducted by the au thors have
revealed such instabilities). In certain problems however , e.g. boundary layer
eq ua t ions , from physical considerations , extra conditions may apply,then (3.18)
may actually he a rel iable and efficient method .

T V .  TUF OPERATOR COMPACT IMPL TCTT METHOD

In this se cti on we employ the OCT appr oxima tion to the spa tial opera tor
given in (2.1) with the two time discretization methods considered in section III
in order to provide a method for solving the time dependent parabolic problem (3.1).
The method is then extended to two dimensional problems .

The methods presented here are unconditionally stable. However , as wi th
most other methods for this problem there is a cell Reynolds number condition
(2.13). The d iscussion of stability will be reserved for section V.

J~T l  One—Dimensional Problems

Consider the equation

(4 .1 )  u = a (x ,t)u + b(x,t)u L ( u )
t xx x

where the coefficients in (4.1) depend on time . Let n indicate the time dependence
in the difference approximation to L(u) at the nth time level , i.e.,

r i tt’?
( 4 . 2 )  (LII) ’? = kon ) l Rn 

~~~ [ jh~
The first time discretization method considered here is Crank—Nicolson .

- u’? (flfl+l)1 RT
~~ it’?~~ + (0n)

l Rn t”?
( 4 .3 )  1 = 

~h
2

which  r equ i res  tha t  one solve

(4. 4) - ~ (Qn+l)-l Rn+1]U’?~
1 

= [~ + ~(fln) 
l
Rn]U

n

where ) = At/2h
2. (Note well , for simplicity in the presentation of the equations

we wi l l  he redef in ing A from time to t ime.)

Denote the righthand side of (4.4) by C’, then (4.4) can be expressed as

(4 5) [Q
n+1 - A ~~~~~ U~~~’ Q

fl+ 1

13
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N o t e  the f o l l o w i n g  f a c t s  about  ( 4 . 5 ) .

1) The m a t r i x  r e p r e s e n t e d  b y - )R°~~ is tridiagonal , thus very easily
solved .

2) No f i c t i t i o u s  p o i n t s , or extra boundary conditions are needed .

3) The rl ghthand s ide  C’? may be computed by the simple recurrence relation

(4 . 6 )  C? 
= 2U~~~ —

4) The method is second order  accura te  in t ime , fo ur th order acc ura te in
space , and unconditionally stable (see section V).

The second method to he considered is derived from a Lees type scheme (see
section III). The Lees method combined with an operator compact implicit spatial
d i f f e r e n c i n g  s u g g e s t s  the  fo l lowing method ,

u’?~~ - u’?~~ (Q n ) -l Rm (U’?
4 l

~ + + u’?~~)(4.7) ~~~~~~~~~~~~~~~~~~~~~~~~ = - 
• 

2• - 
3h

wh i c h  requires the s o l u t i o n  of

( 4 . 8 )  ~r - A ( Q n
)

l R nlurl = A ( Q ~~ )~~~
1 

R~~ U~ + + A ( Q n)l 
RnJU?

1
,

where now = ~~~~~ M u l t i p ly  ( 4 . 8)  by Qn to obtain

(4 .9)  Eon ~h
}R nlp?+l 

= ~R n EU? + ~n_l] + Qn ~~~~
N ote  the f o l l o w i n g  f a c t s  about ( 4 . 9 ) .

1) The matrix to be solved is tridiagonal .

2) No fic titious points or extra boundary conditions are needed .

3) Th e r igh thand side is easily computed .

4) The method is second order accurate in time , fourth order accurate in
space , and unconditionally stable (see section V).

5) I t is necessary to genera te U~ by some other method to beg in the
computation.

6) No iteration is necessary for a nonlinear problem .

This last point becomes very important in many applications , such as the
boundary—layer equations.

14
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T V ?  ‘I wo-fl irnensional Problems

Ve now turn to the consideration of the two dimensional parabolic problem

(
~~

. 10) u = 1 (u) + 1 (u) L(’u)

4 . l l a )  L ( u )  = au + hu
x xx x

(4.llh) L (u) cu + dU
y yy y

As pointed out in the  d i scuss ion  of factorization methods in section III
- n c factorization technique can not be properly adapted with the usual compact
implicit method to spatial operators with different order terms . Thus, the
discussion here ls restricted to the implementation of the OCT method .

For sim pl i cit y (4.10) is solved on a rectangular region given by

= ih
~~

; j=0,l,~~”J , = k h ;  k=0 , 1,~~..K }

where  boundary  d a t a  is prescr ibed for all t for j=0,J and for k=O ,K , and ini tial
data is prescribed for t=O . As in [ 3 ] it is possible to directly extend the
m e t h o d  developed here to rectangular—like I— s h a p e d  domains.

Denote the OCT approximations to the operators in (4.11) by

(-3 .12a) F 1 = (fl
n )

_ l  
R

n
L v J l k  

x X
h
x
2

and

nr in i iU
( 4 .  l ? h )  I t I I  = (0

n
)
—l 

R~~J —~—~-~-
YJh

y
2

The methods to be presented are of the ADI (Alternating Direction Imp licit)
- a r  i e t v  and t h e i r  de r iva t ions  are similar to those developed in [ 3 1 for the

~~~- a t m e n t  of the wave equation.

rank—Ni colson Time Discretization

As before the first method to be examined uses a Crank—Nicolson time
discretization

- (Q
n+l
)

l 
R
n
~~ ~~+1 + (0n)l 

R
n U~

(4 . 1 3)  
hk  j , k 

= 
x x J,k x x

At

+ 
(~
fl+l
)
_l 

~~~~ u?~~ 
+ (Q.~)

l 
R~ U~~ k

2h 2
y
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I
As in the one d i m e n s i o n a l  case where  each of the dierivat ives was represented
separately , t h e r e  is no way to “unr ave l”  the different inverse operators in
(4.13). However , by  adding to (4 . 13)  t he  by now familiar second order perturba-
tion cross te rm

2 ~ 1(o~) 1 
R ~11(Q~

) 1 
R 

n

(- . 1’) - - 
t 

~ 
x x 

~ 
y y .1 , k

‘, 2 1 2 1  2
h hx v

wh ere is t I
~~ f o r w a r d  d i f f e r e n c e  o p e r a t o r ,

resu lt~ nt~ e o u a t i on s  are e a si ly  seen to  assume the f a c t o r e d  form :

(1 . IS) [i - (Q
n+l
)~~

l 
~~~~ [i - ~~(o~~

1Y~ R~~l]U?~~

= + ~ (Q ’
~) l Rnl [T + ~ (0n)l R’~lU’?L ~~~~ X J L  y Y

where ~ = - --
~~
-

~~
- and i I = -

~ 2h “ 2h
2

x y

By i n t r o d u c i n g  the intermed iate variable (4.15) splits into two tridiagonal

sy s t ems

(A .16a) [~ - (Q
tl+l
)

l R
~~~1]z?~~ 

=

(4.l6h) [j 
- ~~(o~~ Y~ R~~~]U?~~ = z?~

o re

(4 .17 ) (;n = ~T + A (0n)
l Rn1iTI + ~ (0fl)

l 
R~1U~• j,k L x - x X JL y )‘ yj j,k

Form ula (4 .lf~) Is analogous to an ADI type approximation solved with a D’Yakanov

splitting. C? is easily computed using previous values by the following

relationship

(~~.l8) ;?,k 
2(U? k 

- + A
~~
(Q
~
)

1 R~ u?k + .

I n order to so l ve (4.16a) boundary condi tions for on the x = const.

boundaries are needed. Likewise , in order to solve (4.l6b) boundary conditions

for on ~he y = const. boundaries are needed . These intermediate boundary

cond i tions a~\e obtained In the following manner:

_______________ - . --- — — —~~~~~~~~~ —.• . .  - ~~~~~
- • - ~~~~~~~~~~~~~~~~



NSWC/WOL/TR 77—29

I) Use one sided differences to compute z’?
4
~ at the four corner points.

Here, the fact that Z?±~ is a fourth order approximation to

n+1 ‘ t n+l
u . — -—(cu + du ) is used .
j,k 2 yy y 1 ,k

2) On the x = const . boundaries (4.16b) is employed to solve for

0n~
1 

z’?~
’ = 

[‘
Q
n+l 

- ~

~v j,k y y j j,k

3) Now tha t the x = const. boundary data for have been obtained , one

can proceed with the x sweeps of the ADI scheme using (4.16a). Included

in these sweeps are the y = const. boundaries . Thus, the z?’
~ 

boundary

values necessary for the y sweeps in (4.l6b) are now fully available.

Lees Time Discretization

Finally , a method which is a generalization of the one dimensional OCI—Lees
scheme is examined . Approximate  (4.10) by

(4 .19)  
U?

+
~~~~~U?~~ [(Q

fl )
_ l 

~~ 
+ (Q)~~ 

+ U~~~ + u?~~

Again , in order to obtain a factored tn —diagonal method one adds the second
order perturbation term

4A~
2
~Q

n
)
_1 R~~][(Q

n
)
_l JLl~

_ U~ k~~~ 
[ X  ~— j 1~

y 
h 2]At 3’

x y

to ob tain

(4.20) 
[
1 - ~~ (c~~) l 

R”][I 
— )(Q’~)~~ Rt1]U?~~

= IA (Q
fl)~~ R~

’ + A (0
n
)
_l 

R~1U~1 X X  x y y yjj,k

+ II + A (0
n
)
—l 

Rn][T + A (0fl
)~~

l 
Rn]U

n 1
x x  x y y  y j,k
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Denote the righthand side of (4.20) by C” 
k’ 

Introduce an intermediate value
+1

Z
i k  

and apply a 1)’Yakanov splitting to obtain

( 4 . 2 l a )  — 
~~~ 

R~~]Z~~~ = Q~ ~~~

(4.2lb) 10
m 

— ~ R n
J I ~~÷l 

= Q
n 

z’?~~‘i y v 1 , k y j,k

Note the following:

1) There does not appear to be any simple algorithm for computing the

ri ghthand side. However, upon multiplying by Q” (as in (4.21a)) it

is clear that only a backsolve of the tridiagonal matrix Q’’ for differen t

righthand sides Is required .

2) The intermediate boundary condition for Z?~~ 
is obtained in the same

manner as in the Crank—Nicolson case once the Z? k 
at the four corner

points are computed .

3) A s in the one—dimensional problem an extra plane of information must be
generated to begin the computation and no iteration is necessary for
nonlinear problems .

‘
~
‘ . STABILITY CONSIDERATIONS

Tn this section we discuss two stability characteristics which enter into
the evaluation of the usefulness of difference schemes for parabolic equations.
A t the threshold one must consider the Lax—Rfchtmyer stability of the evolutionary
operator 1191 . ‘~nre recently, it has come to be appreciated that the stability
characteristics associated with the spatial operator should be examined [201 ,
7 1 , (lii . The ability of a spatial difference scheme to resolve the spatial

varia tion In a region of sharp gradients (boundary layer) often gives rise to a
so called cell Reynolds number condition . Here we examine these stability questions
for the compact implicit schemes previously discussed .

V .1. Temporal Stability Analysis

For the case of constant coefficients one can analyze the L7 stability
of the difference scheme of interest by Fourier analysis rl9l . Here the discussion

is limi ted to OCT schemes. Substituting U~ = 

~~~ 
e
i
~~ into (4.3) yields

/2+A~ (n)\(5.la) 0CN t,,2_ A 9 ( P ) )  where

18 
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~4 (cosi-1)+iP (1 2—R~ ) ~in 1-
(S. Ib) ( - )  = 3a - -- - 

c c 
-

30—2R
2
+(6-R

2)cosP+1 3F sinc c c

the t e rn  Q ( c )  is a s soc i a t ed  w i t h  the Fourier transform of the spatial
2 

<onerator alone [24]. For stability is is required that !ocN~ — 1. Imposing

t h i s  c o n d i t i o n  d i r e c t ly  on (5 . 1)  y I e l d s , R e c ( P )  ~ () as a necessary and s u f f i c i e n t

c on d i t i o n  fo r  s t a b i l i ty .  This latter condition requires that

2 2 2 2
21s(cos P— I )[30—2R +(6—R )cosPl + (12— 8 )3R sin ~ � 0C c C c

Collecting terms and factoring out a (cos ’~—l ) term yields

(5.2) (cos’~—l)[72O— 84R
2+3R 4+cosB (l44—6OR2+3R4) ]  ~ 0

t~egrouping, and noting from (2.13) that the region of interest is R
2 

~ 12 , yields

(5.3) (cosP—l)[12(12—R
2
)+12(l2—R

2
cosO)+288+(l44—72R

2+’3R4)(cose+l)1 ~ 0

To see that this inequality is always satisfied for R
2 

~ 12 , no te

th at the term in the left parentheses is ~ 0 and the term in the bracket is the
sum of four terms , the first three of which are clearly non—negative. The last

term In the  bracket  takes on a nega tive minimum at R2 = 12 and even when cos~~ 1

this m i n imu m  is lu s t  the  nega t ive  of the third term . This es tablishes tha t

~i 1 for  ~ 12 , and the unconditional temporal stability OCI—CN .

To see that OCT—Lees is similarly stable , subs titute U . = e

into (4.7) to obtain a quadratic For

-) 1(~~.4) c-~ + -
~
(1<+l)

~~ 
+ 1< = 0

where K = as in (5.1) above (with A replaced by -
~~

- A ). Since the OCT—CN

method  Is u n c o n d i t i o n a l ly  s table , clearly in the range of R ~ 12 , f K ~ ~ 1.

The s r i h i l l t v  of the  OCT—Lees method is now contained in the statement of the
following l errmia .

Lei~una. For the roots c-
1 

of (5.4)

~ 1 1ff I K I  ~ 1.

19
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- F irst w.- i - - i -  the l emm a ~~~ t h e  i so  of e q u a l i t y  In  bo th  I n e q u a l i t i e s .
— i~~/2  —

Say K = e t i n - ’ , so lve  f o r  , d i r e - t l v  ;is = C) e - where p =

cos = — .~ -os C l e i r l v  such ~ exi sts u t i  t h u s  I = 1. On t ie t h o rL
d~- , 1 - - 1~ ~~~~~~ = e - - 

, then  so l v i n g  fo r  K yields

= -
— I —~ / 

-)

= 1. his completes the pro (f that 1

1
1 = 1 iff X I = I. To show that

I 1ff IK ! 
< 1 examine the v a r ia t i o n  of the roots with respect to the

~~~~Ht circl e as ~ varier fror- 1) to +‘~~~. At K = 0 , i- 1 
= 0, — -~~~ ,both roots are inside

~~~~ C m i t  c i r - l e. No .- h-- a -onne ct lv itv argument , and the fact that the roots

dep end - - nt fnuo ii sl ’ en t h e r-nefflclent K [15), varying K such that 1<! ~ 1 then the

- - -~rr e- -F- - n ’Ing roots c~ cmst rem ain strictl y inside the unit circle . Indeed , i f

~- - rs- r- - - t  “touched” the  u n i t  c i r c l e , i . e. 
~ 

= 1, then by our proof above

1. T h i s ;ir ’u, ’men t d em o n s t r a t e s  t h a t  fo r  V 1 < 1 , Ic 1 1. Con~,erselv at

V = ~-- b o t h  r o o t s  ;ir~ o u t s i d e  t h e  u n i t  c i r c l e  thus, aga in  1w a c o n n e c t i v ity

:~~ -~~I~~~ t 1  t h e  c-
1 must  r e~’ - i i n  o u t s i d e  the  u n i t  c i rc l e  fo r  all K such that IF 1 1.

Fina l ly  the ~t - i b 1 l it ’- of the two d imens iona l  l ees—OCT method i s  e s t a b l i s h e d

u s i ng  th0 above Lemma . Fiihstituting ~,n = 
n 

e1( + k ~ ) into (4.20) one obtains

(5 .5)  P
2 

+ ~-(l — ~~ p ) ~~
- — -~~~- = 0

i-+~~-- - (fl i-f~~- c ( - - )

where a = - -

~~~~~~
— an’~ where ~() and Q (~ ) are defi ned by (5.lb)1 -  x ’  (~~~

fo r  x and v , r esp - - t  ly e  1 ’ . N e t  i n g  t h a t  a ,~~~ are  each sepa ra t e ly  in the  form of

a a~ f - m d  •i hove , one concludes from the above lemma , that in the range

I RX ! i~ , IR~~ /17 (i.e. where the cell Reynolds number invertihilitv
- c - c
c o n d i t i o n  i s ’ ~ t i s f i e d  f o r  each s p a t i a l  ope ra to r )  n~ ~ 1, I P ~ ~ 1. Now

i d e n t i f y i n g  K = - ~p in (5.5) c l e a r ly  our above l emma implies Cl 1.

V . 2  
~~~!ja1_ Stabi lit y

Pxperlence with -o t-~putations involving diffusion convection equations has

long shown that nonphysical oscillations will appear in the computed solution
when the spatI al mesh size Is not sufficientl y small 1 201 , 1 7 1 ,  [111. Here we
use the standard linear analysis to attempt to predict some of the cell Reynolds

number limitations assocIated with the methods discussed in this paper. Through-

out this subsection , f or discus sion purp oses , we will consider the following

model “boundary layer” problem

20
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au — hu = 0 , a ,h positive constantsxx
u(0) = (~‘ , u ( l )  = 1

;~-h ere  in ~enera1 h/a is large. Note , the solution of (5.6) is
h
—x R i

(5. 7) u(x.) = c
1 

+ c ) e
a 

= C
1 

+ c~ e , x . = ltx.

~perator Compact Tmp licit

The spatial stability analysis for this method is quite straightforward
in! provides a practical guide for the range of usefulness of the scheme .

Assuming 1) 
~RU . = I) is applied to (5.6) then one is to consider the three point

homogeneous d i f f e r e n c e  equa t ion

(5. 8) 81 . = 0

Substituting a solution of the form L . = p
1 into (5.8) (using (2.llh)) leads to

th e following general difference solution

24+R (l2—R
2
)

(5.9) U . c., + c.,t): ~ = 
C

1 24—R (12—R )
C C

Three cases are possible for general R
c

1. R
c 

vT7, p > 1. The difference solution is monotone increasing ,

concave up and properly approximates the true solution

?. /f~ ~ R 4.207697 (R value where numerator of p v a n i s h e s ) ,

11 < p ~ 1, The differenc e solution is monotone Increasing hut concave
down and completely wrong .

3. R > 4.207607, — 1 < u < 0. The difference solution is oscillatory.
C

in summary , the spatial modal analysis , of essen tially the opera tor R
indica tes that the cell Reynolds number R should be restricted to the exact

same condition used for the invertibility of 0, i.e. R ~ ITI. Thi s re presen ts

no additional limitation on how one would prudently employ the OCT method .

Compact Implicit—Block Methods

To check the spatial stability of any of the block tridiagonal compact
implicit methods it is sufficient to consider any one of them since each method
(either the 2x2, or the 3x3) has the same set of characteristic roots. Thus, the

fundamental modes of the system can be obtained by taking a solution to (2.8 a ,c)
of (5.6) of the form

21 
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(5.10) 

~
)= 

~
) i =o , i . ...,J~

A nontrivial solution results if the determinanta l equation

(5.11) (c- -i )  I (4-R )u 3+ ( l 7~~~~~~~ ) U
2 - (l2 + l l R  ) u (4+R ) 1 0

holds . A study of (5.11) will at least provide an indication of what types of
nonphvs ical  r e s u l t s  are possible. However , there are four roots (and
co r re spond ing  a r b i t r a ry  C o n s t a n t s )  to contend  ~- ith now. A proper analysis
involves consideration of the particular schemes used to approximate the
required derivatives at the boundaries. Here we present a qualitative analysis
of the possible numerical solutions of (5.6) along with some illustrative
computationa l experiments.

For our model example (5.6) one would l ike to obtain a U
1 

wh ich is
monotone, or at least , does not have large oscillatory modes which are
dominant. (‘,enerallv , thi s is accomplished by restricting R so that if

Re < 0 then p~ < 1. However , a s imp le inspection of the bracketed cubic in
(5.11) at p = —1 ,0,1 rev eal s tha t such a condi tion can no t he found , since there
are always three real roots of (5.11), 

~~~~~ ~~~ such tha t

> 1, ti _ ~
- — ]~, — 1 < p

0 ~ 
0.

Thus the block tridiagonal schemes for (5.6) do not satisfy what has been
generally considered as a reasonable stability requirement . Yet the schemes
are useful in prac tice , see section VI. The reason why the oscillatory modes
do not even appear in some calcula tions , le t alone domina te them , is tied to a
considera tion of the way the c o e f f i c ien ts are de termined by the boundary
conditions.

A series of numerical experiments was mad e for (5.6) and qualitatively we
can conclude the fo l lowing .  In the range of R

~ 
values (0 < R

~ 
< 4/1i5 = 1.0328)

where 
~ 

no dominant oscillations occur . While in the range 
~ 

R ~

2.14383 corresponding to the u~ range v _ I ~ p.~. ~ e 
C the negative oscillations

tend to affect more of the region. For > e
Rc the oscillations are apparent

in most of the region . Typical results are presented for R
c 

= 1.0, 1.5 , 2.0 ,

2.4 in Tables 5.1 , 5.2.

The case R = 2.4 is particularly interesting because here u _ = — 2 and the

-i _ term is the dominant term in the solution in the interior part of region as

is apparent by observing that the ratio of successive terms is — 2.

Since the circumstances where these spatial oscillations will dominate
(they are always present in general) is not easily anticipa ted , one should be
aware of this potential problem for the block compact implicit methods.

22

1



NSWC/WOL/TR 77-29

Table 5.1

Compact Implicit (2x2) Block Tridiagonal Solution of (5.6)

R — 1.0 , b/a 30. R 1.5, b/a = 45.c c

U

1 
u(x

j
) I U

1 
u(x

j)

1 0. (1 . 1 0. 0.
.1~~~ 13F— 1? .1.m~07~~~~ 12 2 .?6899E—13 .99664F—19

3 .-613 78E— 12 .59786K—i? 3 — .507B8E—13 .4633F—1R
4 . l R f l OF — l 1  . 1 7 8 f UF — 1 1  4 .14?92E—1 2 .25481F—i7
S .51 41 4K— Il .50155K— Il S — .33484K—i? .115?OF—16

.14134K— In .13794K—in .84259E—1? .517?7C_16
7 .38533K—IC ) .37hSMF— 10 7 — .20584K—il .?3192F—15

.l f l 4 M h F — 0 9  . 1 0 ? 5 3 F — 0 9  9 .50913K—Il .10395F—14
9 .? t - 3 4 8 U F — r ) ’9 .?78t-45K—09 9 — .12520K—b .465ttYF— 14

10 .7739~ F—0Y .75916F—09 in .30904K—b .?0880F—13
1 1 .2101’ )F—OR .20611K—OB ii — .75975E—10 .93576F—13
1? • ‘~7 Q g 7F —0 m ’ -3  .5~ o27F—08 1? , 1 R 7 9 3 E — 0 9  .41938F— 12
13 .15445K—fl? .IS?~~0K— 07 13 — .45992F—09 .187V5R—11
14 .42104r_07 .413’~~F— 07 14 .1i-474E— 08 .84?35F— 11
15 .114?’t-sF—06 .112’54F—06 15 — .27645F—08 .377,1K— JO
1~ .3 10-I K_ 0 6 .30590F—06 1&• .7001 9F—08 .i~~913F— 09
17 .84?7-H- — 06 .93153K—O F, 17 ~.i6?25E—fl7 .75826K—ri g

1~ .22903K— fl, .2?60i °—0 5 IR .45561F—07 •33 3K—0~
la •F , 2 i 5 5 F — 0 5  .f~,144c’F—05 19 — .87359E 07 .15230F 07
20 .1699?E—04 .i m ~102R_ 04 21) .32645F—06 .6R?5~,F— 07
21 .45839F—94 .45400F—04 21 — .30805E—06 .30590F—06
2? .1?45-~F— fl 3 .1?341F—03 2? .29748E—05 .13710K—O S
23 .339068—03 .335468—03 23 .25611E—n5 .61442K—OS
24 .91995F— 03 .9111-188—03 24 .37845K—04 .275368—04

.?4931F—02 .?47~-4MR— 02 2S .103968—03 .123418—03
?6 .67764K—fl? .673798—0? ?#S .624038—03 .553098—03

.183968— 01 .19316K—O l 27 .2390SE—02 .247A ~3F— 02
28 .4999?F— fl1 .497~~1K— 01 28 .116458—01 .111098—0 1

.1 35608+00 .135348+00 29 .495978—01 .497878—01
30 .368648+00 .367888+00 30 .227?7E.00 .223138+00
31 .10000f+01 .100008+01 11 .100008+01 .10000F+O1
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Table 5.2

Compact Implicit (2x2) Block Trfdfagonal Solution of (5.6)

R — 2 . O , b/a 60. R — 2 . 4 , b/a 72.
____________________ 

C

U
1 

U(x
1

) I U
1 

u (X
1
)

1 0. 0. 1 0. 0.
? .405275—11 .559466—25 2 .103968—09 .539278—30
3 — .60778E—ii .469338—24 3 — .131868—09 .64837K—29
4 .162198—10 .352398—23 4 .344766—09 .7?OIOC—28
5 — .323608—10 .26094F—22 S — .6093f,E—flY . 7 9 4 3 ? K — 2 7
6 .733918—10 .1 92875—21 6 .12990E—l)8 .875658—26
7 — .156808—09 .142528—20 7 — .251788—08 .96525F—25
8 .344278—09 .105318—19 8 .511596—08 .106406—23
9 — .746436—09 .778116—19 9 — .101S2E—07 .1172 98—22

10 .162718—08 .574956—18 10 .203836—07 .129296—21
11 — .35401E— 08 .424848—17 11 — .406866—07 .142525—20
1 . .770896—08 .313916—1 6 1? .814538—07 .1S710~~— 19
13 — .167776—07 .231958—15 13 — .16?83E—06 .173176—1 9
14 .365226—07 .171398—14 14 .325735—06 .190898—17
15 — .79496E—07 .126648—13 15 — .651386-06 .210428—16
16 .173048—06 .935768—13 16 .130286—05 .231955—15
17 — .376678—06 .69144K—I? 17 — .26056E—05 .255698—14
18 .819918—06 .510~~1F— 11 18 .621135—05 .281858—13
19 — .178478—05 .377516—10 19 — .1 04?3E—04 .310688—12
20 .388518—05 .278958—09 20 .20845E—04 .34?47F—11
21 — .84541E—05 .206126—08 21 — .416906—04 .377516—10

.184238—04 .162306—07 2? .833818—04 .41614F—09
23 — .399498—04 .112546—06 23 — .166766— 03 .458726—08
24 .880835—04 .831538—06 24 .33357E—03 .SOSh~ F— 07
25 — .183446—03 .614428—05 25 — .666516—03 .567398—06
26 .460355-03 .464006—04 26 .134016—02 .614426—05
27 — .552566—03 .335466—03 27 — .260146—0? .677298—04
28 .451288-02 .247888—02 28 .608278—0? .74659F—03
29 .145618—01 .183168—01 ?9 — .232905-02 .822976—02
30 .147828.00 .135345.00 30 .11462E.00 .907188—01
31 .100006.01 .100006+01 31 .100005+01 .10000r +0i
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VI. WUNFRICAI EXPERIMENT S

VI.I Introduction

In this section results of numerical experft~~nts conducted with the
various schemes that were discussed in sections II — TV a re  p r e s e n t e d .
These calculations were performed in order to determine the viability of the
OCI method for solvIng viscous flow problems and to understand its character-
istics and limitations and to compare its performance with the classical
second order techniques now in general use as well as to other fourth order
approaches.

One of our ma jo r  concerns is the efficiency of the various schemes , i.e.
computation time required to obtain a given accuracy. Obviously this is
machine as well as programmer dependent .  In order not  to bias any of the
techniques care was taken to program the algorithms in an efficient and
consistent manner . The computing times that are given include time for :
mat r ix  se tups , inversions , boundary condit ion evaluations and (for nonlinear
problems) iteration procQdures. All results were computed on the NSWC/WOL
CDC 6500 computer.

The operation count estimates (multiplications and divisions) for the
block tridiagonal inversion algorithm is given in [8 1 as

(6.1) ops = (3n-2)(m 3 + m2 )

where ci is the order of the block and n is the number of equations. This
estimate assumes full blocks. However , if the specific values of the elements
of the blocks are taKen into account , e.g. zeroes and ones , the actual opera-
tion count can be greatly reduced. A cc~ parison of operation counts for the
various inversion procedures (assuming full blocks) and the modified algorithms
~ir~ s-~~ t’-~ ’ ~n Table 6. —~~ in~ lud~ r~ ~~r-~-e ~re the c~ -:m~ s 1or Tr-atrix
s~ t~ p oj~~r~itions. N~ tc that for Lie blo~~ mc~ hods the i n v e r s i o n  o t  the mitrix
is the dominant factor in the running time , while for the OCI technique the
matrix setup accounts for most of the time.

i,~J.2 Linear Parabolic Equa t ion

The f i r s t  numerical experiment involved the solution of a one dimensional
linear parabolic par tial differential equation with variable coefficients

(6.2a) u~ = a(x,t)u + b(x ,t)u ; t ~ 0 ; 0 ~ x ~ 1

t

25
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1 ( x4 I I xa 1)w h e r e  a ( x , t )  — — -
, h ( x , t )  = 

~) ( t ÷ ~~)- (t +2)~ 
-

w i t h  t he  exac t  so l u t i o n

( h . 2 h )  u (x , t )  i i  ( x , t ) = exp I (x-+ I) (t +?) 1

lo f t  i i i  a n - ~ h o i , n d , i r v  condit ions e i~i - -n by

= i i  (x ,0)
~‘ . 2 c ) C

u (fl ,t~ 
= u (Ot t) u(l ,t) = ‘‘ (l,t)e e

ilils ~x ir—pl e w i~; nn-~t r ii- ted in order to test the stabilit y and convergence
:~ri~~t-rties ot the r i *t h o d s  unth-r consideration for a va r i ab l e  c o e f f i c i e n t  problem .

are shown In iahl e ~
- . 2 and Figure 1. All the methods tested were

s t - i f l t~ and show the  p r e d t -  ~ convergence rates. Crank Nicolson temporal
In t~~c r a t I o n  was used f o r  a l l  the  ‘ chem es .

~f bas ic  i n t e r e s t  is the  savings  tha t can be ob t a ined  in s tcrage  and
c o m p u t a ti o n a l  t im e .  As noted  in Table  6 .2  and Figure 1 the OCT technique is
the most efficient scheme of the methods tested . This is not  whol ly  unexpected
since the block methods require additional work to compute the first and/or
second derivatives .

I t  is also important to note the differences in the computed L
2 

errors

of the fourth order methods. These result from several factors among which are
the local truncation error and boundary conditions. The spatial truncation
errors , whi ch are dominant for the case considered , are given below.

Compa ct Implicit — (Block Methods )

First derivative

6
E = 

— h  ~,
v 

+ n ( h  )
f 180

Second der ivative
4

- h  vi
E = ~~~~ u + O h

S ~• ‘+~~~

Thus for equation (2.l)with a and b constant the local spatial truncation error
at poin t I would be

4 a  vi b v
(6.3) E = - h -

~
-
~

-
~~ u~ 

+ 

~~~~~ 
u
j

26
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~ I

Speci -i1 . i~~ing Eq. (A.1~~ for constant coefficients yields

4 a vi Th v
~~~~~~ -

~~~ F. = — Ii ~~~~~~~ u
1 

+ 
~~~~ 

ii .

In a c h i e v i n g  a scalar tridiagonal system , the OCT technique leads to an
msvmme tric d i i  f e r e n c e  f o r m u l a  and thus has a larger local truncation error than

t he  block m e t h o d s  t h at  were d e r iv e d  from symmetric formulations . Were it not
tor thc different boundary conditions , Pade relations (3.13) for the 3x3 blocks

a H imn i og t vp t -  f orrula for the 2x2 blocks (3. 14) bo th  b lock  methods
~so~ild cjv(- Ident ical errors.

. 2 .1 en .—~~i l  Houni ,i rv Conditions

The OCT method can also be applied to problems with more general boundary
conditions of the form

(~~.5) A ii + Ru g

A linear fourth order accurate expression is sought relating u
x 

at the

bou ndary with U and L (u)  at points 1=0 ,1 ,2, i . e .

(‘ .6)  F0 ( u )
0 

= H~ U
0 

+ + H 2 t 2 + C0 f 0 + G 1f 1 + G 2 f 2

Employ ing the differential equation

1 ( u ) .  = aS
1 

+ bF . = f . (j=O ,l ,2)

and the compact imp l ic i t  f o r m u l a s

F
0 

+ 4F
1 

+ F
2 

= 
~~

- (U
2 

— U
0
)

PS 0 + lOS
1 + S

2 

—
~ (t1

0 
— 2U

1 
+

S
0 
+ 4S~ + S

2 

= ~~ (F
2 

— F
0
)

the coefficients in (6.6) can be evaluated . These coefficients , the truncation
error , and the extension to time dependent problems are given in Appendix B.
As an example , Eq. (6.2a) was solved with the following boundary conditions

x 0 , u + 

~ 
— u (O) + u (O) = (t+3) exp E t+21

61 x a 1 , u — u (l)  — exp 12 ( t + 2 ) 1

27 
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Table h .3 shows the ‘ 2 errors and L , rate s for differen t mesh widths.

Comparisons with the results in table 6.2 indicate that for genera l boundary

cond itions the L,, error Is larger and the computation t ime is increased .

Vl .3 Burgers Equation

The results just presented although extremely promising are obtained for
a l inear equation . In order to investigate the various methods for a nonlinear
prob lem that might be indicative of viscous flows the one dimensional Burgers
eq ua ti on was chos en . Consider

(~~~. 7 )  u = — (u—ci)u + vu
t x xx

With the exact  s teady s t a t e  solut ion given by

(6 . 8) u (x) = 1(1 — t anh  (
~~)}

‘-ear x = 0, u (x )  exhib it s lar ge gradien ts , and as v -+ 0 a steep shock wave forms.

- be ability to resolve this flow field would demonstrate the viability of the
various methods .

Sol ut ions were ob tained in the doma in — 5 ~ x ~ 5 with n = 1/2 and for
v a r i o ij s  values of v , and wi th  the exact values of u ( x )  spec i f ied  at the
boundaries. The initial conditions employed for all cases are

1 — 5 ~~~x < 0

u(x,O) = .5 x = 0

0 0 < x ~~~ 5

Results of computations with the OCT (Crank Nicolson and Lees) methods
and the second order Crank Nicolson finite difference scheme are presented in
lables 6.4, 6.5, 6.6 and 6.7 and Figure 2.

Since Eq . (6.5) is nonlinear , iteration is necessary for the Crank—Nicolson
tempor al discretization . We adapt the OCT method with successive approximation
for the nonlinear term , uu , i.e.x

(~ .9) U
1 (P)~~~ U )~~

1

where I’~ iq the latest iterant value. This procedure converges linearly .

The second order finite difference scheme uses a different type of lineariza—
t ion , i.e.

28
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IT 4 n+l n+l ,n

U I~~~ i~ - - ) fl+ (H )
M4 

= 
‘
~L : ~ ~ j + l  - ~j i  

+ I~~:1 x 2 2 f x 2~.x

is i- ep 1~iced by

~- . lob ) (t ~~ -~

*
‘H being t h e  lastest iterant. This  form of Iterat ion has s’inpr—l inear
onve r en Co C r op e r t  I es [161

H — r h  methods assume an i n i t i a l  guess fo r  ~~ +l 
= which is used to

J
solve the resultant tridiagonal system of equations . Iteration is emp loyed
iznt ii the difference between successive iterants is less than some preset
t c - i~ -r ~u 1 1 ( - e .  ThE- steady state is assumed when differences In so lu t i on  v a l u e s
at two time steps is less than some prede te rmined  value .

Tn contrast to the above procedure , the OCT—Lees discretizat ion does not
req uire iteration and generally approached the steady state in about the
-~~r~e number of tine steps as the OCI—CN method .

Figure 2 presents a graph of the computed L2 
error versus the number of

i n t e r v a l s , fo r  the f o u r t h  order and second order schemes . The s torage
sav ings  poss ib le  w i t h  the  OCT method are readily evident  f rom the  fIgure.
Tables  ~~~ and 6.7 compare s o l u t i o n  values  obtained from the 4 th  order  and
second order m e t h o d s  w i t h  the exact value , for two cases , v = .5 and - = .031.

Al t r l o u O i  the cell Re~m o ld s  number ana ly s i s  for  the OCT method
von in section V was derived for a linear spatial operator , th is theory

can be u s e f u l  to p r e d i c t  the behavior  fo r  nonlinear t ime dependent  problems .
For the Burgers equation i t  was f o u n d  t h a t  ph y s i c a l  solut ions  were ob ta ined  for
a st E-el y state onl y when ‘ Re

’ 2 . 5 5 , wher e
max

— (u—t)A x 
=• c — 

vmax

However , a careful inspection of the numerical results indicates tha t for

> 2.55, in computing the t rans ien t s o l u ti o n , v a l u e s  are obtained
max

whi ch yield cell Reynolds numbers exceeding vT~, and phy sical stead y state
sol ut ions can no t be ob tained . These results suggest that when the
homogeneous case main tains , one monitor the evolution of the local cell
Reynolds  number and consider modifying the spatial mesh when necessary .
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In contrast to t h E -  above behav ior , fo r  the boundary layer equations
oscillations when the~’ occurred were confined to some local region , but
physical solutions were still obtainable elsewhere (see section VI.5).

The r e s u l t s  of the  comn l t a tj o n s  presented  above i n d i c a t e  that  the OCI
method can he adapted to handle nonlinearit les with very little additional
ef fort and can resolve regions with sharp gradients.

V I . -4 Two Dimens iona l  Problems

Th e OCT me thod  was t es ted  f or a two di mensional parabol ic equa tion

E .lla) u
~ 

= a ( x ,v ,t ) u + b (x ,y,t)u + c(x,y,t )u + d ( x ,y,t)u

vbo-~e coe~ fic1ents were constructed in order to obtain the solution

(~~.l 1 h )  u (x ,v ,t )  = e x p { (x + 1 )( y+ l ) ( t +l ) }.

‘~ei.~~~t- r  e f f i c i e n cy  studies nor comparisons with other methods were made.
The dim here was mainly to check the order of accuracy and the viability of
t h e  ADT ‘ o rmu la t ion . Table 6.9 demonstrates that the splitting technique
~1ven In section IV yields fourth order accuracy. Ciment and Leventhal 3 1
have demonstrated that for hyperbolic equations this type of ADI scheme
‘-etains fourth order accuracy on other than rectangular domains , e.g.
1. shaped domains. Similar results are expected for parabolic equations.

VT.5 Boundary Layer Equations

The main thrust of this work is to develop methods that could efficiently
solve viscous flow problems . Although the next two examples are rather
id eal ized , they do possess the intrinsic features of more complicated boundary
layer flows . The two—dimensional laminar incompressible boundary layer along
a flat plate with and without pressure gradient require that one solve

(6.12) u-u +vu u U  +vux y e e  yy

H 
u + V 0

wit h boundary conditions

u(x,0) = v(x ,0) = (1 ; u(x,~~) 
= U

e

and Initial conditions

u ( O ,v) = F(y)

By making the following transformation

c x , v = v v ’
~
U’

30
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the governing equa t ions  reduce  to

(6.13a) 2 t uu = •~u + u + 2 r , u u
-
~ ‘~ ° eç.

(6 . l 3b ’ I = 2 u  + u

For t h e  case of zero p re s su re  g r a d i e n t , ii  = 1, the B la s iu s  f l o w  is ob tained
and t he  e q u a t i o n s  become i n d e p e n d e n t  of  . The so lu t i on  of the ord inary
differential equation that is recovered is compared with the time asymptotic
solution of e q u a ti o n s  (6 . 13a)  and ( 6 . 1 3 h ).

Due to the nonlinear term 2r uu ,. and the decoupling of the momentum and

continuit y eqiia t i~~ns Iteration is r equ i r ed  fo r  the  Crank N icolson scheme .
The term 2~~ u is discretized as follows

- - 
1,n+l 

+ 
1,n ~

n+l 
— ~1

n 
~-P 2 2

= ~~~~ 2 ~~ ~~~~~ 
) = ~~~~~~~_- - u’~ )

i-mp lnving qua si—ii n eari zation (~ k-wt o n—Rap hson iteration)

(~.T +l
) 2 2H* ~-1 - ~~~~~ 

2

*
~h~~re U . is U. 1 .lte’ -1 ire rant , U - -  ollow1n~ relationship is obtained

(2rU .U ., = -
~~~~

- ~~~~~~ I~~~~~~ - (11)
2 
-

* * n
Care = i s t  he  t aken  in the  cho i ce  of the initial 1 . Although setting ~

‘ = U

nives a serond order approximation fo r  (u~~
1) 2, ~ red uces to first order for

(2
~
Uu r )~~ 

due to the tr In the denominator of the derivative approximation

for ur .

If , however , I1~ is approximated by the extrapolation formula

2U? —

second order acc uracy is recovered for  the term ( 2 c U
j
U jr )~~~~

. This procedure

was employed in the Crank Nicolson calculations for both second and fourth
order me thods.

31
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Since the ,io,-u racy of this linearization is of the same order as the
temporal discreti zation error further iteration should be unnecessary.
However , the decoupling of the continuity and momentum equations require
Iteration to obtain the desired temporal accuracy .

I f  ~u + u Is identified as L(u) and

[
~)n)

—1 Rn]U
i ~ I~~1~~ = + H’

is either the fourth order OCT approximation or the second order centered
d ifference approximation (note that in this case 1) = I) and i and m denote appro—
pri — ite rU--o levels , then the boundary layer equations may be discretized in two ways.

Method I.

(
~~.1~~) ~r n+ (t~~~~~ = ~(Qn+

1
:)

_l ~~~~~~~~

]

~~~i
+ ~~~~~~~ 

g(~~~ )

wher e ~ (F~) is t h e  pressure gradient term. Employing Newton Raphson iteration
an’] performing the indicated operations, the fo l low ing sys tem of equa tions
is obta ined

(
~~.l5) [O

n+~ (7~~~* ) - 4 R~~ -] U’~~ = ~ (CU~) 
- 

~~

+ Ofl
+ [

~~U~~ + t~~~g ( f ) ]

wh ere ~ = and ~ is evalua ted  at ri+~ . The system is tridiagonal and can
be inverted given U at j=O and J.

Since 
~j 

appear ing in ~~~~ and R’~~ must be evaluated at n+~ the continuity
equat~ on becomes

(6.16) 2~~(U~)~~ + ~~~~~~~~~ = (~~~~)
T~+

1

or

= 2~°~ ~~~ 
t1)~~~ (U~~

1 + u)~ 
~~~~~~~~~ ,

which can be integrated using Simpsons rule ,

(6.17) - + 

~~

— [v1+1 + 4V
1 

+

32
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~~- thod  IT.

(6.l~~) 
7r~~~ ( l T ) t1~+~ I ~fl+l]pfl+l + [(fl b )

_ 1
Rn1T~~} +

Perforring t h e  I n d i c a t e d  operations , th e following tridiagonal system of
equations Is obtained .

• (6 . 19 )  [ ‘~
+1 n+ i’~ ) — 4R

0 

]
~
n+1 

= 0n+i~~ n 
+ ~n+~ ~~~ 

+ 
~~~ g ( =

fl+ 
)~

where

= 
)

[(Q
n )

_ l
Rn]lJ n 

+ 
ç n+~ i~

can he eva lua ted  at  the new t ime level by the recursive relations

( 6 . 2 0 )  ~fl+l 
= (~ n+ 3/2 

+ 2r 0~~ )(U~~
l)
2 
- - ~~~g ( c fl+ 

) - r~~~ (1.11) 2

The handl ir-w of the u, term in the continuity equation for the above

me thod deserves special attention . Since ~ and u are evaluated at the (n+l)
t ime level , El . r n s t  also he evaluated there. It was thus necessary to use

a one sided second order accurate derivative approximation for u (uniform
mesh)

(6.21) (U r ) ’~~~~ (3~IT+l - 4 j j
fl 

+

Both methods T and IT worked successfully . However , method I was
preferred computationally .

Lees Me thod

The Lees method , which does not require iteration, was also used to
obtain solutions of the boundary layer equations. Th e dis cre t ized equation is

n+l n-l

(6.22) 2f
n 

t~ 
~~~~~ 

2~~~~ 

= 
(Q~5~ R

n 

[i~j
1.l_l 

+ U’~ + un -] + g(~n)
which reduces to

(6.23) [O
TTI rn U~) 

- -~ ]un 1 = 4!~
2~ [
~ 

+ tT~ t_ l]

+ On[f
n 
U~ ~~~~ + ~~g(C~)]

where = ~r/t
2 

-
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In o rder  to u p d a t e  () and R at the (n+ 1) f level , mus t  f i r s t  be
evaluated at that level. Hence it is necessary to employ (6.21) for the
integration of the c o n t i n u i ty  equation .

The Lees method incorporates three levels of information , therefore
a starting techni que such as Crank Nicolson is needed . Furthermore , to
employ variable requires a restarting procedure so that for such cases
the Lees method m ay  lose some of its appeal.

lable 0 compares the computed L2 error and wall shear , Tw, for the various
methods. Note that using formula (6.6), especially for the cases with
few mesh points yields better predictions for the wall shear than the
standard fourth order one sided difference formula. Figure 3 which is a
plot of the L2 error versus the number of intervals illustrates the
savings in storage that can be obtained by the fourth order methods.

Effects of cell Reynolds number were noted for the OCT and 2x2 block
methods for the case ~~ ‘- = 1. Tn the discussion below , reference will he
made only to OCT since the cell Reynolds number characteristics of the
blo ck methods are not easil y understood .

The local cell Reynolds number for the Blasius problem is defined as

R = ~Anc

l~ - function ~ grows linearly for large n, so that at some point, as the
domain is extended , the local value of Rc will exceed /17 and when 4.207
I s exceeded , as predic ted by the linear analysis, oscillatory behavior will
ultimately result. This conclusion indicates ironically , that in the
region of small grad ients (at  the boundary layer edge)  increased local
resolution might be required to remove the oscillatory behavior. Keller [9
has made similar observations for second order methods.

In the above calculations for i—p = 1 , with the boundary layer edge
at = 6 no oscillations occurred (with the internal (R ) = 3.790 atc max

= 5.0). However , with the boundary layer edge extended to p = 10.0,
oscillations appeared from the outer boundary inward to n = 8. Since
the velocity oscillates (< 1.5%) about a value greater than 1, in the
region 4 ~ n < 10, the velocity profile exhibits overshoots.

Enlarging the domain does not cause the oscillations to invade the
region where the cell Reynolds number condition is satisfied as inspection
of the solution reveals. Furthermore , the computed wall shear is affected
only slightly (see below).

-r (Eq. 6.6)

6.0 .4771

10.0 .4869

20.0 .4893
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The second boundary l ayer example considered was the flow with an
adverse pressure gradient , the Howarth prob l em , where the  ex te rna l  ve loc i ty
is linearly retarded

u = l - -~~.e

As a consequence of the  adverse p res su re  gr a d i e n t , separa t ion  (van i sh ing
of the wall shear) will occur at some poin t  downst ream along the  f l a t
plate. The determination of the entire flow development , from the initial
Blasius profile to the point of separation is sought. Since the boundary
l ay e r  e q u a t i o n s  break down at s e p a r a t i o n , it is expected that the numerical
computations will he sensitive near that point. Factors such as i.~ step
size and iteration criteria may s t r o n g ly  i n f l u e n c e  the c a l c u l a t i o n s .  A
comp l e t e  ana lys i s  of t he  behavior  of the  numer ica l  sol ut ion near the
separation point is not considered in this report. However , a set of
calculations for a fixed \~~ = lO—~ and iteration convergence parameter ,

= i0 5 have been obtained and are shown in Table  10. The computed
separation point (the poin t  where the shear changed s ign)  along w i t h  the
running time for each calculation is given .

rn general , one i t e r a t i o n  was r equ i r ed  fo r  convergence of the
Crank Nicolson discretization , except near separation . Several calculations
did no t converge near the separation point and were thus terminated there.

hese  are i n d i c a t e d  by as te r i sks  in Table 10.

Hirsh 6 1 employ ing the 3x3 block method computed the separation
point at f = .119818 for t~n = .2. Since no discussion of the behavior of the
v e l o c i t y  p r o f i l e s  near separat ion was given in [ 6 1 a de tailed comparison
can rot be made. However , our calculations show that the second order
Crank N i c o l s o n  and the 2x2 block methods give r > .1200 for all ~n ,sep
whereas OCT (in particular the Lees discretization ) yields values of ~ < .1200.

sep

Near separat ion the cell Reynold s number becomes very large and exceeds
the limits set by the linear theory. However , the ac tual behav ior of the
solution in this region is not predicted well , and simp le mon itoring of
Rc is not help ful as it was for the Blasius problem since it is now necessary
to take into account the nonhomogeneous terms contributIon. Further investiga-
tion is necessar-- to understand even the nonhomogeneous l inear case.
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Table 6.1

Matrix Setup and Inversion Operations* Uniform Mesh

MATRIX INVERSION SETUP TOTAL

ESTTMATFD~* ACTUAL

Scalar
Tridiagonal SN—4 5N—4 2 2 N — 2 2  2 7 N — 2 6
( O C T — C N )

2x2 Block
Tridiagonal 36N—24 27N—60 8N+16 35N 44

(C—N)

3x3 Block
Trid iagonal 108N— 72 49N— 62 4N+24 53N 38

(C—N)

Scalar 11N—16 lON *** 21N—l6
Pentadiagonal

* Here it is assumed that multiplica tions and divisions
are equivalent. However on certain machines this may not be
true , e.g. on the CDC 6600 a division is comparable to six
multiplications. The operation counts would have to be changed
accordingly for the methods.

** Reference 1 8 1.
~~ Does not include extrapolation formulas for points adjacent
to the boundaries.
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Tab l e 6.2

Linear Variable Coefficient Parabolic Equation

u = a (x ,t)u + h(x,t)u
t xx x

u = exp f (x+l)(t+2)}

TIME COMPUTING TIME *
METHOD N STEPS L

2 
ERROR L

2 
RATE (SEC)

Second 100 2000 .20 * 10
04 355

Ord er 
—05 

1.98
Crank 160 2000 .79 * 10 55.4
Nicolson 1.96

200 2000 .51 * 10 68.8
1.97

400 2000 .13 * 10 135.5

04
3x3 5 2000 .15 * 10 12.2
Block —06 

4.06
Crank 10 2000 .90 * 10 17 .7
Nicolson —07 4.14

20 2000 .51 * 10 30.4
4.67

40 2000 .20 * 10
08 

58.5

2x2 5 2000 .83 * lO~~~ 7 4
Block 

—06 
3.58

Crank 10 2000 .70 * 10 11.9
Nicol son —07 3.87

20 2000 .48 * 10 20.8
4.59

40 2000 .20 * io
08 40.2

Operator 5 2000 .24 * io 04 5.4
Compac t 

~~~~~~~ 

4.00
Implicit 10 2000 .15 * 10 8.8
Crank 07 

4.00
Nicolson 20 2000 .94 * 10 15.6

4.52
40 2000 .41 * 10

08 30.0

* Computation times are for a CDC 6500
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Table 6.3

Linear Variable Coefficient Parabolic Equa t ion

u~ = a(x,t)u + b(x,t)u

u = U
e 

= exp (x+l)(t+ 2)

u(0) + u (O) = (t+l) exp [t+21 , u(l) = u (l)
OCT — 2000 TIME STEPS

N L ERROR L
2 

RATE I 
COMPUTING TIME*

2 (SEC)

5 .222 * io
02 

6.57
4.796

10 .122 * l0~ 
~ 9.58

4.049
20 .737 * 10 05 

16.71

06 4.063
40 [ .441 * 10 - 

30.42

* Computation times f or a CDC 6500

38
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Table 6.4

Steady State Solution of Burgers Equation

S 
Second Order Crank Nicolson

v N ’ DX vDT/DX 2 MAX ERROR L
2 

ERROR L
2 

RATE

50 .20 6.25 .633 * l0~~ .125 * io
2

2.007
.500 100 .10 25.00 .158 * 10 .311 * 10

4 _
~~ 

1.999
200 .05 100.00 .395 * 10 .778 * 10

50 .20 3.125 .303 * 10
2 .442 * io

2

3 2 2.020
.250 100 .10 12.50 .747 * 10 .109 * 10

1.997
200 .05 50.00 .186 * l0~~ .273 * 10~~

50 .20 1.5625 .128 * 10~~ .131 * 10~~
2.061

.125 100 .10 6.25 .303 * io
2 .314 * io

2

2.019
200 .05 25.00 .749 * 10~~ .775 * 1O~~

50 .20 .775 .694 * i0~~ .473 * 10
1

2.331
.062 100 .10 3.100 .130 * 10~~ .940 * io

_2

2.069
200 .05 12.40 .308 * io

_2 
.224 * io

_2

100 .10 1.55 .694 * 10
_i 

.334 * 10~~
.031 2 2 2.328

200 .05 6.20 .130 * 10 .665 * 10

I
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Table 6.5

Steady S tate Solution of Burgers Equat ion
OCT Crank Nicoison & Lees

v N DX ~,DT/DX
2 MAX ERROR L2 ERROR L

2 
RATE

10 1.00 .25 .132 * io
_2 

.231 * io
_2

4 4.076
20 .50 2.00 .796 * 10 .137 * 10~~

.500 4.028
50 .20 6.25 .205 * i0~ .348 * 10~~

6 
3.985

100 .10 25 00 .128 * io
_6 

.216 * 10

10 1.00 .125 .189 * 10 .267 * i0~~
2 

4.125
20 .50 .500 .126 * l0~ .153 * io 2

.250 
4 

4.062
50 .20 3.125 .312 * 10~ .370 *

5 
4.008

100 .10 12.500 .194 * 10 .230 * 10

20 .5 .250 .187 * 10~~ .188 * 10
_i

4.120
.125 50 .20 1.563 .466 * ~O

’3 .431 * io~~
4 

4.046
100 .10 6.250 .312 * 10 .261 * 10

50 .20 .388 .868 * io 2 .554 *
.062 4.145

100 .10 3.100 .484 * ~O
’3 .313 *

60 .167 .558 .598 * 10~~ .346 * 10~~
4.263

.031 100 .10 1.550 .868 * i0~
2 .392 * io

_2
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Table 6. 6

Steady State Solution of Burgers Equation
Comparison of U Profiles

= .500

EXACT OCI - C-N 2ND ORDER C-N
X N = 10 N = 20 N = 100 N = 200

-5.00 .993307 .993307 .993307 .993307 .993307

—4 .00 .982014 .982042 .982015 .982014 .982021

—3.00 .952574 .952545 .952589 .952574 .952595

—2.00 .880797 .881716 .880850 .880797 .880833

—1.00 .731059 .732380 .731138 .731059 .731094

— .40 .598688 .598688 .598705

— .20 .549834 .549834 .549842

—0.00 .500000 .500000 .500000 .500000 .500000

I
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T ab l e  ~~. 7

~teadv S t - i t e ~olut 1on of Burgers Equation
nr J’~~r I son of I’ ProfIles

= .031

Oil — i~~: ?NI l~~1~~:P C~ ;

I- ~- : =  60J  = 100 N =  ~r)fl

I ~~0°~ 0 

- 

~~~~~~~~~~~~~~~~~~

1.16 1 . 99091,0

- -l.0~° 1.000000 . i I ’~~0 1.000000 1.000000

— . ~ 
i ( ee~

- — 500 ~~~~~~~~~~~~~~~ .999995 1.000000

— . s~~ 7 
- - - I 9

— - ~-fl0 . .999903 1.000000

- .500 - c i I 1 ~c~~ .9Q9651

- ~~~~ • ‘)~~
t
~25 .998091 .999981

- .133 • 9 95~~~~~J . 998843

- . ~90 
- 

. ‘~6l L .962779 .994937
— . 167  . 9t 6 ~~ 2 5  .996115

0.000 .500000 .500000 .500000 .500000

. 1 6 7  . 0 63 6 7 5  .003885

.200 .038206 .037221 .005062

,333 .004603 .001157

.6 00 .001575 .001909 .000019

.500 .000314 .000349

.600 .000063 .000097 .000000

.667 .000021 .000106

.80() .000002 .000005 .000000

.833 .000001 .000032

1-000 .000000 .000010 .000000 .000000

1.167 .000000 .000003

1.200 .000000 j .000000 .000000
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Table 6.8

Two Dimensional Parabolic Equat ion

OCT — Crank—Nicolson

= a ( x ,v ,t) Uxx + h(x ,y,t) u + c (x ,y, t) u + d(x ,y,t) u

u(x,y,t) = exp ~(x+1)(y+1)(t+l)}

Domain is square 13 = [1/2 ~ x,y ~ 11 , Ax = A y = h

MAX MAX
TIME RELATIVE RELATIVE
STEPS h At L

2
-ERROR L

2
—RATE ERROR RATE

5 .1 .1 3.235—03 4.414 
l.544—04 

3.905
20 .05 .025 1.517—04 1.031—05 

1.977
80 .025 .00625 4.890—06 6.549—07

10 .1 .1 3.903 —02 
4.364 

3.909—04

40 .05 .025 1.896—03 4.909 
2.559—05 3.982

160 .025 .00625 6.311—05 1.619—06

I’
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Tab le 6.10

Howar th Flow

~~TIIOI) T N T~~~~~~~~~~~~~~~~~~N~’TN~~TIME
sep (~sEC)

Second Order 20 .50 .1252 8.90
Crank Nicolson 50 .20 .1209 19.92

100 .10 .1204 38.41

200 .05 .1202 71.58

2x2 Block 20 .50 .1202* 19.38
Trid iagonal
Crank Nicolson 50 .20 .1202 47.47

100 .10 .1202 94.05

oci 20 .50 .1188* 13.74
Crank Nicolson 

50 .20 .1199* 35.81

100 .10 
- 

.1201* 73.63

OCT 20 .50 .1l86** 11.66
Lees 50 .20 .1200 27.55

100 .10 .1200 54.21

M = l0~~ , ~~~~ = 10~~

+ Point where the shear changed sign

* Calculation didn ’t converge and was terminated

** Oscillations occurred and calculation was terminated
~~ Iteration parameter
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AP P F ND TX A

The operator compact implicit for-mulas are derived here for uniform and
nonuniform grids , with their associated truncation errors.

G iven

(A—l) Lu = au + hu
xx x

i in. ar relit i -nship between u and the spatial o f l f  r~it ~r , Lu , at x
1 

is
~~ ~~ In th e ‘ orm

(
~‘ — 2 )  r u_ + r

0 
u
0 
+ r

+ 
u~ = q L(u) + L(u)~. 

~ q
+ T ( u )

+

wh e— . i —  -~h~ rthan I notation the subscripts — , 0, + are used f or j — 1 , j and j+l

resi - e~ tI velv, and the j dependence of the coefficients is not indicated , see (2.12).

The function values u_ and u~ and the spatial operators L(u) and L(u)+ can be
obtained through Taylor ’s series expansion about the point j.

(A-Ia) u~ = u
0 
+ h~ u~~~ 

h~
2 

(2) h~
1 

(3) h+
4 

(4) h~
5 

(5) + 
h
4
6 

U~~
6
~ ++ ~-~-— u0 

+ ~ -~— u~ + ~~-~-— u0 
+ -~-~-- U

0

1) h
2 

(2) h
3

(A-Ib)  u = u
0 

- h u~ + ~~~— U0 
- ~~~~~ u0 

+ u~
4
~ 

h 5 
(5 h 

6

- (6)
-~~7— u 0 ~-~-— u 0

(2) (1) (1)
(A-Ic) L(u) = a u + b u b_ u0 

+ (a - h_ b ) u~
2
~0

- h (a - ~~~ h)U~~
3) 

+ ~~~~~ ~a - ~~~ 
b )  

u~~~

h~~~_
~~~ _ (a  

_
~~~~h )u~

5) 
+~~~~~ (a 

_
~~~~b )u~

6) _ ...

(2) (1) (1)
(A-3d) L(u)

÷ 
= a+ u~ 

+ b
+ u~ b+ 

u
0 

+ (a
+ + h+ b+)u

~
2
~0

+ h
+(
a + ~~~~b+)u~

3) +~~~

2

(a+ +~~
± b+)u~

4)

+ 

h+
3

( 

h~ ) ~ h~
4 ( h~ ) (6

— a+ +~~
--b+ u0 +~~~-~---- a

+ +~~
— b + u0

where superscrip ts in parenthesis indicate derivatives and h+ x
1~ 1 

x
1 

and

h_ — x1_ 1 . Mul tiplying equations (A—3a) — (A—3d ) by cx , 8, y, ~~, respec tively and

collecting terms the following relation is obtained

A-i

- -
~~
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(A—4 ) iu~ + P-u + yL (u) + ~L(u)~ = (~+8)u0 
+ ~~ u~~~ + A ~~~~~ + C u~~~ + 0 u~~~

or

(A-5) 
~
u
+ 

— (~~+~~)~~0 
+ Pu = - yl (u)  - 

~
F ( u )

÷ 
+ A 

(2 )  
+ B Cl) 

+ ~ 
~~(3) + D

+ Tr ’.inca t Ion Error ,

where in order that (A—5) be equal to (A—2),

B - -i h~ — ~
- h + 

~ 
b
+ 

+ y ~ b
0

-— 
rzh

2 
Ph 2 

\ /

(A-6) 

+ + ~ ~a+ ÷ h~ b+) + - h 
b )  

= a
0

-

~ - + ~~~+ (a+ 
+ ~ ± b

+) 
- Yh 

(
a - 

i
— 
b )

— 
ah~~~ Ph ~h 

2~~ 
h~~ \ 

~~ 2 
/ h

0 —~-~--- + —~~
-
~~
--- + —~---~a~ + 

~~~

— b
±) 

+ —~
- ---- 

~a - 
~~ h ) 

= 0

Def ine

(A—7) = nD , ~ = r f l , -y = ‘y D, ~ =

where 0 is the determinant of (A—6)

D 
~

l2a a
+

(h
+~ 

+ 4h~~
2 

h_ + 4h
+ 

h
2 + h 3

)

- 2a~b h ( 3 h ~
3 

~ 7h~~
2 

h + 5h~ h
2 

+ h
3
)

(A—8) 3 2 3
+ 2 a b+h+(h

+ + 5h
+~ 

h_ + 7h~~ h + lb )

- h
÷

h b~~h (h
+ 

+ h ) ~~~}

then the variables ~~, P , y and ~ are given b y

~ ‘-~l2h~ a~ a0 (h 2 - h~~ h - h 2
)

(A-9) + 2a+b0h+
2h (3h

+ 
+ 2h _) + 2a0

b+h+
2(h

+
2 - h

+
h - 2h 2

)

+ h÷
3h h

0b~ (h~ + h)}

A-2

—
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(A-1fl) = ~ l:’~ 0~~ h(h
2 

- Il~~h - h~~~~) + 2a0h h ~~ (2h “ + h~~h - h
2
)

- ‘ a h
0
h h (Th + lh )  + h

0
h h

÷h 
1(h~ + h )}

(A-Il l ~h(h~ + h )  = DE 2an 
- h

+
h
0] 

- ~~~2n + h
+
h
÷] 

- ~E2a — h (2h + h
+)]

(A-l~~l ~
h+ (h

+ + h )  = DE2ao + h h
0] 

- 
~~E2a+ + h

+
(2h

+ 
+ h ) j  — y~ 2a - h h ]

Multiplying thru by — f l , the q ’s and r ’s become

- - + 0(A— 13) q = 
~~~ q = ~~, q = — I)

- - 0 - 
+ —

r = —
~~~~, r = ( ‘- f + P ) ,  r = —~~

such that the onerators P and R are given it, the form

1~ = 
~ 

S
~ 

- 0 1 + -; S
(A— 14)

where S is the shift operator.

Is ing the relations (A—7) — (A—12) the truncation error given by

(A-IS) = - + 

~~~~ 

~~~ + 
-

~~~~ b
+) 

- 

;h
1 

(a 
- ~~~~b

)}U
~~

5) 
+

f I 6 1 +
~~T

÷_
~~~(~+

÷ 5 b
+)

÷_
~~~& 

~~~~~~b ) }u ~
6)

is seen to be third order accurate for small h.

For a uni f orm mesh , h+ = h = h, the truncati on error reduces to

4
FT 

= 1800 a+a_ { - ~~ a
0

a a
÷~

u~
6) 

+ ~4 a0
a h ~

- 35 a a ~b0 
+ 4 a0a+h]u~

5
~~

which Is fourth order accurate.

Nr t i- that In equatIon (2.12), coim-non factors in the q’s and r ’s have been
canceled (lavolving constant h), so tha t (2—12) differs from (A—il) by a

3multi plicative constant , 2h
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B

IIi& m-t f i - I ents of (6.6) namely

( B — i )  F
0 

( u )
0 ~~~~~~~ 

+ + H2U2 
+ C

0
f
0 
+ (;

1
f
1 

+ G
2
f
2

are derived.

(onsider the compact Implicit formulas

(B-2 a) F
0 + 4F

1 
+ F

7 
= 

~~
- (‘22 

— U
0
)

( B - ?h )  

~o 
+ 105

1 
+ S

2 
= ~~~~~ (U

0 
— 21

1 
+ U

2
)

(B—2 c y S
~ 

+ 4S
1 
+ 

~2 
= ~~

- (F~~ — F
0
)

and the d ifferential equation at points 1=0 ,1,2 expres sed as

(B—I) ~z .S + b . F f . j 0 ,l ,2
3 i  i i  3

Equations (B—2) — (B—3 ) fo rm a sys tem of 6 equations in 9 unknowns, and
thus F

0 
can be de termined  as a f u n c t i o n  of u0 ,u

1,u
2 , f

0
, f

1 
and f 2

.

The coefficients in (B—i) are listed below.

H

~~ 

= - 

~~
) (3 1 + 

~~~~~~ 
+ 

48 
(_i - -~~~ + 

~~
-) ~ /C

P ~~~~~~~~~~~~~~~~~~~~~~
h
2 a

2 
a
1 

h

I
( B - 4 )  ~ = L ~- (_----i +~~ ) / c() a a h

b b b
C = 2

a
1 

a2 
a
0 

h a
1 a2 

a
0

B—i
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The truncation error Is given by

ETRUNC = {_ 
~~ 

- 10 + E~ ~ 
- + -

(~
+
~)(~~ ~~~]F~ + 4(_~

. -_
~~+~~)FT}

where

E = s ~~~~~~ (6)  
F — F — 

(6)
S IO~~ ‘ F 3 O ’

~ ~T 2 O u

Eq. (B—5) can he specIalized for constant coefficients

(B-6) ETRUNC = [(~ 
~~ + 

(6) 
+ 

(i
~ + 

~
) u (5)]

In the case of time dependent problems modifications to (B—i) are necessary .

Consider the one dimensional parabol ie  equat ion

(B—7) u~ = L(u) aS + bF = f

The first derivative at an end point at time level (n+l) in the form of

(B-8) F~~
’ = H~~

1 
U~~~~

1 + H~~~~
1 

Un  + R
2
°

~~~ Un’ +

~~~~ f
fl+l 

+ Cn+l f
fl+l + Cn+l fn4l0 0 l 1 ‘2 7

is sought.

Again , as before use the compact implicit formulas (B—2), but with u,F and
S evaluated at time level (n+l). The differential equation (B—7), h.jwever,
discre t ized temp orally by a Crank Nicolson scheme to yield

(8—9) 
~~~~ ~ = Earl ~r’ 

+ b~~~’ Fn1J12 

+ f fl

Ea~5 + ~ F~ ] / 2  2

8— 2

. - - —— .--- ~-~~
----
~~.

--‘
~ -z:

’ — - 
- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -‘
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Thus f appearing in (8—8) is the spatial operator evaluated at (n+1) and is
given by

(B—b ) f fl+l a~
1+i 

5n+l + ~~~~ = 
2 

Un’ - (f ~~ + 
~~~

Hence , substituting (B—lU) into (B—B), the desired rela t ionship is ob tained

— [~n+l 
+ c~~~

1 um~~ + ~~~~~~ + 
2 ~n+l 1 1,n+l

0 
— 

10  t~t 
‘0 J 0 L i  .-~.t 

‘1 J i

(B-il) + [l
n+l 

+ f- cr’] ~n+l 
+ c~~’ [~ 

+ ~~~ u~~
]

+ G ~
+l 

[f~~~
÷~~~~~ u~

] 
+G ~~~~[f~~+~~~~ U~]

The local spatial truncation error remains unchanged .
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